
TTUtility - A Delphi Paradox Table Verify & Repair Component
(ver 3.0)

For Delphi 1 and 2

(Update Customers be sure to see the "What New in Version 3.0" section.}

Contents
1. Introduction
2. What' New in Version 3.0
3. Installation
4 Disclaimer and Legal Stuff
5. General Implementation Rules and Design Guidelines
6. Outline for a Successful Verify & Rebuild
7. Reference TTUtility
8. Reference TRepairDialog
9. Reference TIdxUtl
10. Demo #1 - A Simple Verify & Rebuild Application
11 Demo #2 - A Batch Verify & Rebuild Application
12. Demo #3 - Index Check and Regenerate

 13. Demo #4 - Table Repair Dialog Demo
Appendix A - TUtility API Technical
Appendix B - Strategies for corrupt file recovery.
Appendix C - TUtility Error Codes
Appendix D - TUtility Component Interface and structures
Appendix E - TUtility Component Interface and structures
Appendix F - Version information & Requirements for DLLs and the BDE
Ordering Information

1. Introduction
Now there's an answer to data corruption problems that does not include the words "all
nighter". TTUtility is a Delphi component that implements the functionality in Borland's
TUtility.DLL, the same DLL that comes with Paradox for Windows. The primary
purpose of this component is to give the Delphi or Paradox developer an easy to
implement tool for validating and fixing corrupt Paradox tables from inside delivered
applications. The TUtility DLL(16 bit) or TUtil32.DLL(32 bit) on which this component
is based will work on Paradox tables up to and including level 7 tables.

This component was developed to give those responsible for data integrity a break.

Whether you are a contracted consultant or an internal DB administrator, TTUtility is a
must for your component pallet and your personal well being.

Features
* Fully implements Borland's TUtility API in an easy to use Delphi Component.
* Contains separate Verify and Rebuild execution methods.
* Supports Borrowed Table structures for Rebuilds.
* Uses canned or customized status guages (all callbacks are supported).
* Provides all the analytical information necessary to choose the correct rebuild

method.

* Includes complete and installable component help.
* Special bonus component provides for checking and regenerating out of date

Indexes.

You also get three demonstration projects, one for single table verify/rebuild, one for
batch table verify/rebuild and one that shows how to check and regenerate out of date
indexes. These projects have been specifically designed to drop into existing Delphi
applications with little or no modification.

Use the TUtility component to add verify and rebuild capabilities to your Paradox/Delphi
applications. You can even create safe, multi-table, "as you sleep", batch verify and
rebuild jobs.

The TUtility component suite includes 16 and 32 bit version of;
* the main TTUtility component,
* two ready to use table repair dialog box components, (one for single tables & one for
batches)
* two canned status dialog components, and
* a bonus index verification and regeneration component.

Further the components are written to explicitly load the TUtility DLL when the
component is instanciated rather than implicitly loading the DLL when the component is
"used". What this means is that the DLL is loaded into memory when the component is
created and not when the application is created. Bottom line is, we are not waisting your
operating systems resources.

Note that not all table corruption is fixable using this component - sometimes a table will
be in such a corrupted state that the only method of restoring that table is from a backup.
We recommend making periodic backup copies of your data.

2, What's new in Version 3.0

Because you asked for it we have;
* Added a new table repair dialog box component. It's the fastest way to add table repair functionality to
your application.
* New features to assist you in solving DLL and BDE version mismatch problems. Now if you right click
the TTUtility component at design time and then select the first menu options you can view the version
numbers of both the table repair DLL and the BDE. Also, the TTUtility component also has two new
runtime/readonly properties (VersionTU and VersionBDE) that lets you use this information in your
programs.
* Combined the 16 bit and 32 bit source for the TTUtility Component into one unit. TU32.pas and
TU_INT32.pas are gone! Previous users need to delete TU32.*and TU_INT32.* from the directory
where you installed your 32 bit components and then in Delphi 2's install component dialog you need to
Delete TU_INT32.PAS from your Installed Units list and add TU_INT.PAS and then rebuild the library.
* Added support for the latest BDE and Tutility DLL's.
* Updated this documentation and the Help files.
* Fixed various small problems (see the History.txt file)

3. Installation

If you are reading this it means that you have successfully unzipped the archive file. If you didn't unzip
using the -d option (restore/create directory structure stored in ZIP file) then you should go back and do it
agian using -d. Create a directory called TU (or what ever). Make this the current directory and unzip the
archive into that directory. The resulting directory structure will look something like this.

.

..
16
32
DLLs
Btchproj
Indxproj
Projtu
Source (only if purchased)
{and then some help and documention files)
An explanation of these various directories will follow shortly. Note that if you are installing the demo
you will be missing either the 16 or 32 directory this is because there are two different demos (16 bit and
32 bit) and each comes with one or the other directory.

Complete installation of these components requires that you;
1. Copy the distribution files to your disk drive.
2. Install the component into the Delphi Component Pallet.
3. Merge the components help into the Delphi help system (optional).

1. Copy the distributed to your disk drive.
a - Unzip the product ZIP archive to your hard drive as outlined above..
b - Copy the TU_INT.HLP file to the

\Delphi\Bin
 directory for Delphi 1.xx and to the

\..\Borland\Delphi 2.0\Help
 directory for Delphi 2.xx.

c - Copy the TUTILITY.DLL and/or TUTIL32.DLL to your \windows directory

We include only one version of the 16 and 32 bit table repair DLLs with the archive. We try to include
the version of the DLLs that will most likely match your setup. Borland has released a number of
different versions of these DLLs. Each DLL has a corresponding version of the BDE that it must match
up with. The Table Repair DLL must be matched with the installed BDE in order to work correctly. We
include the table repair DLLs that match the BDE that comes with Delphi. If you have updated your 16
bit or 32 bit BDE then you should jump ahead to Appendix F which lists the various BDE and Table
Repair DLL combinations. Once you've determined which Table Repair DLL is right for your installed
BDE you can go to our web site at www.o2a.com and download the correct DLL.

d - Copy the TU_INT.KWF file to the \Delphi\Help directory.and to the \..\Borland\Delphi 2.0\
Help directory

You may keep the other files where they are. Many people like to have a single third party component
directory to keep their component search path short in Delphi. You can go ahead and do this, just make
sure that all the component units stay together and all demo project files stay together.

(Files by Directory)
 . . 16 {Delphi 1.xx component files}
REBDLG.DCU Rebuild Status Dialog Unit File

REBDLG.DFM Rebuild Status Dialog Form File
TU. DCU TTUtility Unit File
TU_INT.PAS Component Set Registration File <<< INSTALL ME <<< INSTALL ME
TU_INT16.DCR 16 bit component set resource file
TUIDX .DCU TIdxUtl Unit File
TUSTRS.RES 16 bit Strings Resource File
VERDLG.DCU Verify Status Dialog Unit File
VERDLG.DFM Verify Status Dialog Form File
TREPDLG.DCU Component wrapper for the Verify and Repair Dialog Component
TREPFORM.DCU The Verify and Repair Dialog Form
TREPFORM.DFM The Verify and Repair Dialog Form

 . . 32 {Delphi 2.xx component files}
REBDLG.DCU Rebuild Status Dialog Unit File
REBDLG.DFM Rebuild Status Dialog Form File
TU. DCU TTUtility Unit File
TU_INT.PAS Component Set Registration File <<< INSTALL ME <<< INSTALL ME
TU_INT32.DCR 32 bit component set resource file
TUIDX .DCU TIdxUtl Unit File
TUSTRS32.RES 32 bit Strings Resource File
VERDLG.DCU Verify Status Dialog Unit File
VERDLG.DFM Verify Status Dialog Form File
TREPDLG.DCU Component wrapper for the Verify and Repair Dialog Component
TREPFORM.DCU The Verify and Repair Dialog Form
TREPFORM.DFM The Verify and Repair Dialog Form

. . DLLs {Copy these files to your \Windows directory see Appendix F }
TUTILITY.DLL 16 bit Table repair DLL (form Borland) for Delphi 1.xx
TUTIL32.DLL 32 bit Table repair DLL (form Borland) for Delphi 1.xx

. . Projtu (Demo #1 Files - Single File Verify & Rebuild)
PROJTU DPR
TUMAIN DFM
TUMAIN PAS
VWERRDLG DFM
VWERRDLG PAS
. . Btchdemo (Demo #2 Files - Batch File Verify & Rebuild)
BTCHPRG2.DPR
BTHMAIN2.DFM
BTHMAIN2.PAS
ERRTBDLG DFM
ERRTBDLG PAS
STATDLG DFM
STATDLG PAS
TREPFORM.PAS
TREPFORM.DFM

..DlgProj
TESTPROJ.DPR
TESTUNIT.PAS
TESTUNIT.DFM

. . Indxproj (Demo #3 Files - Index Chech and Regenerate)
INDXMAIN DFM
INDXMAIN PAS
INDXPROJ DPR

. . Source (only if purchased)
REBDLG.PAS Rebuild Status dialog source.
TREBDLG.PAS Component wrapper for the TRepairDialog
TREPFORM.PAS The TRepairDialog form
TU.PAS TTUtility source. Compiles to either the 16 or 32 bit component using IFDEFs.
TUIDX.PAS TIdxUtl source. Compiles to either the 16 or 32 bit component using IFDEFs.
TUSTRS.INC String constant include file.
TUSTRS.RC 16 bit String constant Resource Workshop source.
TUSTRS32.RC 32 bit String constant Resource Workshop source.
VERDLG.PAS Verify Status dialog source.

. . Files in root
TUTILITY.WRI This Document
README.TXT Last minute notes.
HISTORY.WRI Code Change History.
TU_INT. HLP Help file must be copied to directory with other delphi HLP files
TU_INT.KWF Help key word file. Must be copied to directory with other KWF files.

2. Install the component into the Delphi Component Pallet.

For Delphi 1.xx
- Start Delphi, choose Options|Install Components and then
- Click the Browse button and locate TU_INT.PAS in the 16 directory.
- Select it.
- Press OK in the Install Components dialog and wait for the Library to rebuild.
If this fails see Installation Problem Resolution at the end of this section.

For Delphi 2.xx
- Start Delphi, choose Component|Install and then
- Click the Browse button and locate TU_INT.PAS in the 32 directory.
- Select it.
- Press OK in the Install Components dialog and wait for the Library to rebuild.
If this fails see Installation Problem Resolution at the end of this section.

3. Merge the components help into the Delphi help system. OK this is the toughest part install so pay
close attention. Install the Keyword File

a. Exit Delphi if it is running
b. Make a backup of \delphi\bin\delphi.hdx
c. Run the HelpInst application from \delphi\help (should be in you Delphi Group)
d. Open \delphi\bin\delphi.hdx
e. If the existing KWF files report "not found" then add \delphi\help to the search path by

selecting
Options|Search Path.
f. Select the Keywords|Add File menu choice and select TU_INT.KWF from \delphi\help

directory
 where you copied it in step 1 above.

g. Select File|Save
h. Exit HelpInst

 The new components help has now been merged into Delphi's help system.

That's it the component should now be correctly installed. Run the demos and have fun. We have not
included any sample corrupt tables so you will need to create your own. One way to do this is to simply
delete a table's .PX

Installation Problem Resolution

If you get "File not found (????.DCU)" where the ???? is the components unit name.
This is the most likely result of exceeding the maximum length of the component unit search path. To
check this open up the Install Components Dialog and tab to the Search Path edit field. Go to the end of
this field and check to see if the path for the newly installed component is correct. If it has been cut off it
means that you have exceeded the maximum allowible length of the search path. This is usually only a
problem in Delhi 1.xx, Delphi 2.xx allows a much longer search path. The only solution to this problem
is to figure out ways to shorten the search path string. Some suggestions are;
* Delete paths to components that are no longer installed.
* Combine components that are currently in seperated directories into one directory.
* Shorten the names of your component directories. Not that the recommended path to these table repair
components is either c:\tu\16 or c:\tu\32.

If you get "Fatal Error (0) File not found '..\..\..\Tu.pas'" Where ".\..\..\" is the path to the component
unit.
The most likely reason for this error is that you are either
-- trying to install TU_INT from the 16 bit directory while in Delphi 2 or,
-- trying to install TU_INT from the 32 bit directory while in Delphi 1.

If you still have problems with the install you can contact us at 70664.1453@compuserve.com

How to Move the components to a Different Pallet.

When the TTUtility component set installs it defaults to a new pallet page called "Paradox" if you would
like to move the components to a different component page you may. All you need to do is open the
TU_INT.PAS file and edit the registration statements at the end of the file. For example, to move the
components to a pallet page called "New Components" change;

procedure Register;
begin
 RegisterComponents('Paradox', [TTUtility]);
 RegisterComponents('Paradox', [TVerifyDlg]);
 RegisterComponents('Paradox', [TRebuildDlg]);
 RegisterComponents('Paradox', [TIdxUtl]);
end;

to

procedure Register;
begin
 RegisterComponents('New Components', [TTUtility]);
 RegisterComponents('New Components', [TVerifyDlg]);
 RegisterComponents('New Components', [TRebuildDlg]);
 RegisterComponents('New Components', [TIdxUtl]);
end;

4. Disclaimer and Legal Stuff - PLEASE READ

We really hate disclaimers but in the case of this component we feel it is absolutely necessary. The
TUtility API and this component on which it is based are very powerful and can make your file
maintenance tasks much easier. However, along with this power comes great potential for disaster.

We have studied the TUtility API in depth and have learned about a number of its quirks. All that we
have discovered is documented here. We realize that the documentation is lengthy, but we highly
recommend that you read it from front to back. If you follow the guidelines documented here you should
be able to easily and successfully build applications that incorporate verify and rebuild functionality. We
have tested the component both in house and in beta test, but this testing is still a far cry from
understanding all the different things that can happen to a file in the real world. So... here's the
disclaimer.

Use of this product is at your own risk. Neither Out & About Productions or Borland International is
responsible for any damage to your data as a result of using this component (TTUtility) or the underling
TUtility.DLL The TUtility.DLL is a unsupported product from Borland International. Borland
International has made the TUtility.DLL (included with this product) freely redistributable with an
application developed with the Borland Database Engine.

Along with the TUtility.DLL you may distribute any application that includes the TTUtility component
and supporting components with no additional royalties beyond your initial license registration fee.

If you use the TTUtility component to develop an application where you also deliver the application's
source then this is considered an additional license and the receiving party must license a copy of
TTUtility from Out & About Production.

The TUtility.DLL, TUTIL32.DLL and its API are NOT official Borland products, and as such Borland
does not support the published API. You have the right to use this technical information subject to the
terms of the no-nonsense License Statement that you received with Delphi. Out & About products are
licensed with exactly the same rules as documented in Borland's no-nonsense License Statement.

The TTUtility components are copyright 1995, 1996 by Out & About Productions and is protected by
international law. We reserve all rights.

5. General Implementation Rules and Design Considerations

Here are 3 rules and one consideration you should be aware of when designing an application that
incorporates the TTUtility component.

RULES
1. Any table that will be verified or rebuilt using the TUtility component must be set to inactive (Active =
False) at design time if you want to run the application under Delphi. For a discussion on the reasons see
the TUtility API section later in this doc. If the table is active you will receive a run time error.

2. We highly recommend that you never run ExecuteRebuild on a table without first running
ExecuteVerify. ExecuteVerify discovers things about the table that ExecuteRebuild needs to know for a
safe rebuild of the corrupt table.

3. If the table under consideration has a master password then it must be assigned correctly to the
Password property. The TUtility component has no way of knowing if this password has been assigned
incorrectly. In fact it will rebuild your table without the correct password, however, the resulting table
will have no records in it. THIS DOES NOT RAISE AN ERROR. So... Make sure to assign the password
correctly.

CONSIDERATION
Your application should deal with the side effect tables created by the Verify and Rebuild processes.
These include the Error Table created by ExecuteVerify and the Problems and Key Violation Tables
created by ExecuteRebuild. At some point the tables should be deleted (especially the Error Table). The
first demo project automatically deletes the Error Table when it's done with it.

6. Outline for a successful Verify & Rebuild

This section outlines the basic steps you should incorporate into your application to ensure the best
results form the verify/rebuild process. This is intended to be a brief outline and does not cover the finer
points which are covered later in the reference section. These steps outline the basic steps you should
follow to do a verify and rebuild. These do not outline a complete application. Refer to the demonstration
projects to see examples on how these guidelines are implemented.

Setup
First you need to set up the TTUtility component by assigning certain properties.

1. (Required) Select a table to verify by assigning a value to the TableName property. This assignment
can happen either at design time or at run time. Assigning a value to TableName has two side effects.
The TblInfo property is given value and the header of the table is verified. The TblInfo property is a
record structure that contains valuable information about the table. Of particular interest is the bValidInfo
and iRecords fields in this structure. If bValidInfo is FALSE or iRecords is zero (and you know there are
records in the table) then it means that the header of the table is corrupt. This is useful information and
will be used later. Also, the iErrorLevel property should be checked to see the results of the header
verify. Chances are that if either bValidInfo or iRecords delivered bad news then iErrorLevel will also.
(See TableName, TblInfo, and iErrorLevel in the reference section for more info). OK, so just by
assigning the TableName property youve actually done a whole lot of the information gathering work.

2. (Optional) Assign values to the tErrTableName, tBkUpTableName, tKeyVTableName, and
tProbTableName properties. These are all tables that Verify and Rebuild generate as a side effect of their
execution. It is not required that you assign values to these properties since defaults will be assigned if
you do not. These properties can be assigned at either design or run time.

3. (Optional but Recommended) Assign a value to the AltStructName property. This is the name of a
known good table that ExecuteRebuild can borrow the structure from. It is always safer to rebuild a table
using a good table header than it is to rebuild using a corrupt table header. This property can be set at
either design or run time.

After assigning the AltStructName it is also a good idea to check the AltTblInfo.bValidInfo to make sure
the alternate table does not have a corrupted header.

4. (Required) Assign a value to the Password property if the table has a master password. (See the
warnings above and below). Rember that the TUtility.dll has no way of knowing if this password has
been assigned incorrectly.If a table is rebuilt without the correct password the resulting table will have no
records in it. This property can be set at either design or run time.

5. (Optional) Either drop the Verify and Rebuild Status Dialogs into your form or define the
onInfoVerify and onInfoRebuild events to respond to the status messages from the Verify and Rebuild
processes. This gives you all the nice visuals. Note that there is a performance penalty in activating these
status callbacks but they are a lot better than a blank screen. (See the reference section for more details).

Execution
Once the minimum setup is completed you are ready to verify and possibly rebuild the table named in the
TableName property.

1. From some event in your application run the ExecuteVerify public method. If errors are found,
ExecuteVerify will create an error table with the name specified in the tErrTableName property. The
structure of this table is documented in the ExecuteVerify description in the reference section.
ExecuteVerify will also set the iErrorLevel public property to the highest error level found in the error
table. (This is the worst error found).

It is probably always a good idea to give the user a way to review the error table after verify is complete.
Check out the Demo #1 to see an easy way to do this.

2. Now it's decision time. In you code you must read the iErrorLevel, TblInfo.bValidInfo, and the
TblInfo.iRecords properties to determine whether to run ExecuteRebuild using the table structure of the
table being rebuilt, or to borrow the table structure from another table. See Appendix B for a short
discussion on making this decision. To use the table structure of the table being rebuilt pass
ExecuteRebuild the pCurrentTblDesc property. To borrow the structure from another good table of the
same structure pass ExecuteRebuild the pAltTblDesc property. From some event in you application run
the ExecuteRebuild with the table description you have decided on.

Clean up
Once your table is rebuilt it always a good idea to clean up any of the side effect files created by
ExecuteVerify and ExecuteRebuild. In Paradox for Windows the table repair utility only deletes the error
table created by the verify step. The other tables (backup table, key violation table and problems table)
are left to the user to clean up. You should do what ever is right for your application.

7. Reference TTUtility

The TTUtility component has a component editor specifically designed to show the current version of
both the installed BDE and the installed Table Repair DLL (TUTILITY.DLL or TUTIL32.DLL) to
access the component editor for TTUtility drop one on a form and then right click on it. Then select the
first menu option "Component Info". The information dialog will display.

TTUtility Public Properties

constructor Create(AOwner: TComponent)
You will only need this if you create your instance at runtime or if you create a descendent component.
Been there done that.

destructor Destroy;
Only of value if you are creating a new component with TTUtility as the descendent.

property iErrorLevel : Word; (Read Only)
The iErrorLevel property contains the status of the table being worked on. This property gets set
whenever the TableName or AltStructName properties are assigned. This property is also set when the
ExecuteVerify procedure is run. Use the value in iErrorLevel to make decisions on how best to proceed
through the verify/rebuild process. This property along with the bValidInfo field in the TblInfo (or
AltTblInfo) structures are keys to successful table maintenance.

Then possible values are;
0 : No structure problems. Everythings OK.
1 : Table is damaged but verification can continue.
2 : Table is damaged and verification stops.
3 : Table must be rebuilt manually with a user supplied table description. (use AltTblInfo)
4 : Table cannot be rebuilt. Use your last backup.

Note that the Table Repair utility in Paradox for Windows will allow for an auto-rebuild (structure is not
specified by the user) on Level 2 errors. Experience shows that this is often a bad idea. The problem is
that since the verify aborts with a level 2 before completion, there is no way to tell if there is a level 3 or
4 error beyond the point where verify aborts. We suggest that the user always specifies an alternate file
structure on level 2 errors, especially if the bValidInfo field is false. (See the descriptions for TblInfo and
AltTblInfo).

procedure ExecuteVerify;

ExecuteVerify performs the verify step. At a minimum the TableName property must be set for this
procedure to operate. Depending on how options are set, ExecuteVerify creates or appends to the table
specified by the tErrTableName property. You can view this table for an in-depth analysis of the table's
problems. On completion ExecuteVerify sets iErrorLevel to the highest error encountered. Use
iErrorLevel and the value in TblInfo.bValidInfo to determine the best way to run ExecuteRebuild.

The structure of the error table created by ExecuteVerify looks like this.
Field Name Type Size
Drive A 2 Disk Drive
Directory A 65 Path to the Table
Table Name A 8 Paradox Table Name
Extension A 4 Should always be .DB
Error Code S Code used to get the Error Message (Appendix C)
Error Level S Rating of error severity
Error Message A 150 Textual description of error
Date D The table's file date
Time T The table's file time

The Error Level is the most important field since it rates the importance of the error. See the description
of the iErrorLevel property. ExecuteVerify reports the highest value found in the Error Level field in the
iErrorLevel property.

procedure ExecuteRebuild(pTableDesc : pCRTblDesc);
ExecuteRebuild attempts to fix the table. It creates a backup of the original table in the table specified by
the tBkUpTableName property. A problem table (tProbTableName), and key violation table
(tKeyVTableName) may also be created.

ExecuteRebuild's minimum requirement is that the TableName property be specified and that a value be
passed in the method's pTableDesc parameter.

The pTableDesc parameter specifies a complete description of the table to be rebuilt. This table
description can be created in any of three ways;
1. Use the value in the pCurrentTblDesc property which is the description of the table named in the

TableName property.
2. Use the value in the pAltTblDesc property which is the description of the table named in the

AltStructName property. (This is borrowing the structure from another table).
3. (NOT RECOMMENDED) The user can create the table description itself.. If this is what you want

to do you must study and completely understand the CRTTblDesc. This is by far the most
complicated record structure we have ever encountered and we highly recommend that you avoid
attempting the creation of this structure from scratch. Note, that once you pass this pointer to
ExecuteRebuild it becomes "owned" by the TTUtility object. Do not attempt to destroy it yourself ,
TTUtility will take care of the destruction of this structure.

Recommendation - For the safest, most successful rebuilds we recommend that you pass
pCurrentTblDesc as the parameter to ExecuteRebuild only when the iErrorLevel is 2 or less (see
iErrorLevel above) and when TblInfo.bValidInfo is True. Otherwise, specify a table to borrow the
structure from in AltStructName and use pAltTblDesc as the parameter for ExecuteRebuild.

procedure ExecuteVerifyRebuild;
ExecuteVerifyRebuild combines the verify and rebuild processes into a single convenient procedure call.
First the table mentioned in the TableName property is verified. If the header is not damaged
(TblInfo.bValidInfo = True) and the error level is less than 3 then the table's own structure is used for the
rebuild, otherwise the table named in the AltStructName property is used. If AltStructAlways is true than
the table named in the AltStructName property is always used to get the rebuild structure. The
AltStructName property should always be assigned prior to executing this procedure.

If the AlwaysRebuild property is set to true then the table will always be rebuilt even it verify returns an
iErrorLevel of zero. If AlwaysRebuild is false (the default) then the table is not rebuilt if the verify
showed no table errors. Note, it has been reported that the the verify portion of the TUtility.Dll can
show no when there are errors that rebuild can fix. We can not prove or disprove this claim. Also
Verify will not report out of date secondary indexes. Use the TIdxUtl component to check and regenerate
secondary indexes.

Use the companion OnInfoVerReb event plus onInfoVerify and onInfoRebuild to monitor the execution
of this procedure. See the documentation on those events for further information.

property TblInfo: TTableInfo; (ReadOnly)
The TblInfo record contains useful information on the structure of the table being verified and/or rebuilt.
TblInfo is filled with data whenever the TableName property is assigned. Here is a brief description of
the fields that make up the TTableInfo Structure.

 sTableType : String[32]; Driver type - Should always be "Paradox"
 iFields : Word; Number of fields in Table
 iRecSize : Word; Record size in bytes
 iKeySize : Word; Key size (Primary key)
 iIndexes : Word; Number of indexes on the table
 iValChecks : Word; Number of val checks on the table
 iRefIntChecks: Word; Number of Ref Integrity constraints on the table
 iRestrVersion : Word; Restructure version number
 iPasswords : Word; Number of Aux passwords on the table
 bProtected : Bool; True if the table is protected by a password
 sLangDriver : String[32]; Language driver name
 iBlockSize : Word; Physical file blocksize in K
 iRecords : Longint; Number of records in table
 bValidInfo : Bool; Is the header information reliable.

The last to fields in this data structure need special mention. The bValidInfo field specifies whether
TTUtility was able to read the header information reliably. If this value is False then the chances are
good that the header is corrupt. The safest thing to do in this case is to borrow the table description from
another good table rather than use the corrupt tables description

property AltTblInfo: TTableInfo; (ReadOnly)
The AltTblInfo record contains useful information on the structure of the table being used to borrow a
table description from. AltTblInfo is filled with data whenever the AltStructName property is assigned.
The value of AltTblInfo.bValidInfo should be checked after assigning AltStructName. If the value is
False do not use the AltStructName table to specify the structure used for the rebuild. See TblInfo above
for a more complete description of the fields in TTableInfo.

property pCurrentTblDesc: pCRTblDesc (Read Write)
Pass this value to ExecuteRebuild if you want to use the table specified in TableName to determine the
structure of the rebuilt table. You can assign this value with the pointer to a CRTblDesc that you created
yourself (Not Recommended). See all the discussion in the section on ExecuteRebuild above for more
information.

ALSO NOTE - The user should not destroy or modify the Table Desc structure that is passed back by
GetCRTblDesc it is to be looked at and passed to Rebuild table only.

ADVANCED NOTE - If you create and populate a pCRTblDesc structure yourself (not recommended)
and assign it to TUtility's pCurrentTblDesc property it then becomes owned by the TUtility component.
This means that you must not destroy it yourself. Any existing pCurrentTblDesc structure is destroyed
(the memory is freed) when ever a new value is assigned or when the component itself is destroyed. If
you destroy it yourself you run a good chance of GPFing your app.

ADVANCED NOTE The following describes the pCRTblDesc (Create Table Description) for
rebuilding a table. This structure is also documented in the Borland Database Engine User's Guide. The
CRTblDesc structure defines the general attributes of the table and supplies pointers to arrays of field,
index, and other descriptors.

Field Type Description

szTblName DBITBLNAME Table name, including path.
szTblType DBINAME Driver type.
szErrTblName DBIPATH Name of the Error table created by Execute Verify (including path)
szUserName DBINAME Not currently used.
szPassword DBINAME Master password (if bProtected is TRUE).
bProtected BOOL TRUE if table is encrypted.
bPack BOOL If TRUE, specifies packing for the rebuild. Assigned by the Pack
property.
iFldCount UINT16 The number of field descriptors supplied.
pecrFldOp pCROpType Not used by rebuild. Must be zero.
pfldDesc pFLDDesc An array of field descriptors.
iIdxCount UINT16 The number of index descriptors supplied.
pecrIdxOp pCROpType Not used by rebuild. Must be zero.
pidxDesc pIDXDesc An array of index descriptors.
iSecRecCount UINT16 The number of security descriptors given.
pecrSecOp pCROpType Not used by rebuild. Must be zero.
psecDesc pSECDesc An array of security descriptors
iValChkCount UINT16 The number of validity checks
pecrValChkOp pCROpType Not used by rebuild. Must be zero.
pvchkDesc pVCHKDesc An array of validity check descriptors.
iRintCount UINT16 The number of referential integrity specifications.
pecrRintOp pCROpType Not used by rebuild. Must be zero.
printDesc pRINTDesc An array of referential integrity specifications.
iOptParams UINT16 The number of optional parameters.
pfldOptParams pFLDDesc An array of field descriptors for optional parameters.
pOptData pBYTE The values of optional parameters.

In order to populate this structure correctly you must also create pointers to the pfldDesc, pIDXDesc,
pSECDesc, pVCHKDesc and pRINTDesc. For information on these record structures refer to the
DbiTypes.Int file in you Delphi\Doc directory or to the BDE User's guide if you have it.

Also, be advised, that the last three fields of the structure mentioned above (iOptParams, pfldOptParams,
pOptData) must contain information specific to the Paradox table that is to be rebuilt. The required
information is not documented anywhere outside of Borland. We suggest that if you really must create
and populate this structure yourself that you first populate it a few times by borrowing the structure from
a known table and then study the data in the borrowed structure.

The authors of this component can not support technical questions relating the to manual populating of
this structure.

property pAltTblDesc: pCRTblDesc; (ReadOnly)
Pass this value to ExecuteRebuild if you want to use the table specified in AltStructName to determine
the structure of the rebuilt table. The description returned in the pAltTblDesc represents the complete
description of the table named in the AltStructName property. See all the discussions above for more
information.

This value is readonly. It exists only as a convenient way to specify a table to borrow a structure from for
the rebuild process.

NOTE - The user should not destroy or modify the Table Desc structure that is passed back by
GetCRTblDesc it is to be looked at and passed to Rebuild table only.

property VersionTU: TVersionNumber; (ReadOnly)
This readonly property returns the internal version number of the table repair DLL, TUTILITY.DLL or
TUTIL32.DLL depending on which version of Delphi you are running. The returned value is of type
TVersionNumber which is defined as

 TVersionNumber = Record
 MS1 : Word;
 MS2 : Word;
 LS1 : Word;
 LS2 : Word;
 end;

Where MS1, MS2, LS1 and LS2 correspond to each of the 4 parts of a Microsoft Internal version number.

property VersionBDE: TVersionNumber; (ReadOnly)
This readonly porperty returns the internal version number of the installed BDE.

The returned value is of type TVersionNumber which is defined as

 TVersionNumber = Record
 MS1 : Word;
 MS2 : Word;
 LS1 : Word;
 LS2 : Word;
 end;

Where MS1, MS2, LS1 and LS2 correspond to each of the 4 parts of a Microsoft Internal version number.

TTUtility Published Properties

property AltStructAlways: Boolean;
Set this value to true if you always want the table specified in AltStructName to determine the structure
of the rebuilt table. This is used only by ExecuteVerifyRebuild.

property AltStructName: TFileName;
Assign this property the name of the table to use as the structure for the rebuild. This should be a
completely qualified file name including the path. Assigning a value to AltStructName has two side
effects. The AltTblInfo property is given value and the header of the AltStructName table is verified. The
values of in iErrorLevel and AltTblInfo.bValidInfo should be checked after assigning a value to
AltStructName.

Note that the table table specified in this property should have at least one dummy record in it. The
tables in your "borrow structure" directory should actually have at least one dummy record in
each. The reason for this is that for some reason the table repair DLLs (TUTILITY.DLL and
TUTIL32.DLL) believe that an empty table is a corrupt table.

property AlwaysRebuild: Boolean;
Used by ExecuteVerifyRebuild. If this property is true then the table mentioned in the TableName
property is always rebuilt even when verify show that it has no errors.

property CBActive : Boolean;

Set this value to False if you don't want the installed Callback functions activated. You make completely
define the callbacks using CBVerifyDialog and CBRebuildDialog or OnInfoVerify and OnInfoRebuild
and then choose to not use them at run time by setting this value to false. This would be done for reasons
of performance.

Testing has shown that turning the information callbacks on has an adverse effect on performance. The
CBActive can be turned on or off at runtime. This is especially useful for creating programs that do
multiple verifies and rebuilds and where there will be no one around to watch the gauges move anyway.

NOTE : Do not try to change CBActive from True to False from inside any of the onInfoXXXX events.
CBActive must be set prior to ExecuteVerify, ExecuteRebuild or ExecuteVerifyRebuild.

property CBRebuildDialog: TRebuildDlg;
Assign this the value of the TRebuildDlg component on your form. This is the easiest way to get status
information during ExecuteRebuild.

property CBVerifyDialog: TVerifyDlg;
Assign this the value of the TVerifyDlg component on your form. This is the easiest way to get status
information during ExecuteVerify.

property Name : String;
Enter the component name here.

property Options: TVerifyOptions;
This property specifies various behaviors of ExecuteVerify. The default is all options are false. Here are
the available options:

TU_Append_Errors Append errors to an existing error table
TU_No_Secondary Bypass secondary indexes
TU_No_Warnings Prevent warnings of secondary errors
TU_Header_Only Verify table header only
TU_Dialog_Hide Reserved for future expansion. Do not use
TU_No_Lock Do not lock table being verified

If you are going to create an application that verifies a number of files in a batch, then you will want to
set the TU_Append_Errors to TRUE unless you specify a different error table for each table in your
batch.

property Pack : Boolean;
The way this property is supposed to work is that if the Pack property equals TRUE then ExecuteRebuild
packs the rebuilt table. If Pack is set to FALSE the records are not packed. This is part of the TUtility
API and is exposed in the component for completeness. However, it is not supported by the current
version of the TUtility.DLL. The records are always packed.

property Password : String;
Assign the master password of the table to this property. If the table is password protected then this
property MUST be correctly assigned, otherwise, when ExecuteRebuild is run, the table will appear to be
rebuilt but the resulting table will have no records in it. See the discussion later in this document under
the TUtility API section for more information about passwords.

property Table : TTable;
This property was added as an optional way of specifying the TableName (see TableName). You can
drop a TTable component into your form and then use this property to select that TTable component.
Assigning this component automatically assigns a value to the TableName property. This may be easier
than assigning the TableName property directly if the path name is very long.

Note that this property is completely optional and is meant only as a way of assisting in the assigning the
TableName property. Also note that using this method to assign Tablename uses slightly more resources
than assigning TableName directly,

property TableName : TFileName;
Assign this property the name of the table to be verified and/or rebuilt. This should be a completely
qualified file name, including the path. Assigning a value to TableName has two side effects. The
TblInfo property is given a value and the header of the table is verified. The values in iErrorLevel and
TblInfo.bValidInfo should be checked after assigning a value to TableName.

Property Tag : LongInt;
The Tag property is available to store an integer value as part of a component. While the Tag property
has no meaning to Delphi, your application can use the property to store a value for its special needs.

property tBkUpTableName: TFileName;
Assign this property the name of the backup table created by ExecuteRebuild. The default is TableName
+ '_'. So for example if the TableName was CUSTOMER.DB then the backup name would be
CUSTOME_.DB If no path name is specified then the table will be created in the same directory as
TableName .

property tErrTableName : TFileName;
Assign this property the name of the Error Table to be created by ExecuteVerify. The default is
__TUERR.DB. If no path name is specified, the table will be created in whatever directory Delphi
believes is your Private Directory (Session.PrivDirectory).

property tKeyVTableName: TFileName;
Assign this property the name of the key violation table created by ExecuteRebuild. The default is
KEYVIOL.DB. If no path name is specified, the table will be created in whatever directory Delphi
believes is your Private Directory (Session.PrivDirectory).

property tProbTableName: TFileName;
Assign this property the name of the problems table created by ExecuteRebuild. The default is
PROBLEMS.DB. If no path name is specified, the table will be created in whatever directory Delphi
believes is your Private Directory (Session.PrivDirectory).

property OnInfoRebuild: TInfoRebuildEvent;
Define the OnInfoRebuild event if you want to create your own Rebuild Status Dialog box. The
TInfoRebuildEvent looks like this.

 TInfoRebuildEvent = procedure(Sender: TObject; {Where the message came from}
 RebuildCBRec: TRebuildCBData) of object; {The data to be acted on}

Where TRebuildCBData is

 TRebuildCBData = record
 iPercentDone : Integer; { Percentage done. }
 sMsg : String[128]; { Message to display }
 end;

If sMsg is blank then use the information in iPercentDone other us the information in sMsg.
Here's a quick example of how this event might look:

procedure TFormTUMain.TUtility1InfoRebuild(Sender: TObject;
 RebuildCBRec: TRebuildCBData);
begin
 with RebuildCBRec do
 begin

 if sMsg = '' then
 FormRebuildStatus.GaugeRebuild.Progress := iPercentDone
 else
 begin
 FormRebuildStatus.LabelNumPacked.Caption := sMsg;
 FormRebuildStatus.refresh;
 end;
 end;
end;

NOTE : This is VERY important. DO NOT MAKE ANY DATABASE CALLS FROM THIS METHOD.
This event is actually part of a BDE Callback response. The rules for Callback responses are clear. The
BDE is not re-entrant, that means that you can not do anything here that would call the BDE. So.... No
database calls. Just make pictures.

property OnInfoVerify: TInfoVerifyEvent;
Define the OnInfoVerify event if you want to create your own Verify Status Dialog box. The
TInfoVerifyEvent looks like this.

 TInfoVerifyEvent = procedure(Sender: TObject; {Where the message came from}
 VerifyCBRec: TVerifyCBData) of object; {The data to be acted on}

Where TVerifyCBData is

 TVerifyCBData = record
 PercentDone: word; The Percent Completed
 TableName: String[82]; Passed only with Process = TUVerifyTableName
 Process: TUVerifyProcess; Changes with the various verify steps below.
 CurrentIndex: word; Increments with each secondary index checked.
 TotalIndex: word; Number of Secondary Indexes
 end;

and The TUVerifyProcess is

 TUVerifyProcess = (
TUVerifyHeader, Header is verified, PercentDone increments.
TUVerifyIndex, Primary Index is verified, PercentDone increments.
TUVerifyData, Primary Index Data is verified, PercentDone increments.
TUVerifySXHeader, A Secondary Index Header verified, PercentDone incs.
TUVerifySXIndex, A Secondary Index verified, PercentDone increments.
TUVerifySXData, A Secondary Index data verified, PercentDone incs.
 TUVerifySXIntegrity, A Secondary Index integrity is verified. Ditto.

 TUVerifyTableName Passes the Table Name in TVerifyCBData.TableName
);

You need to watch the process field to determine which gauge to adjust with the amount delivered in
PercentDone. Here's a quick example of how this event might look:

procedure TFormTUMain.TUtility1InfoVerify(Sender: TObject;
 VerifyCBRec: TVerifyCBData);
begin
 with VerifyCBRec do
 begin
 Case Process of
 TUVerifyTableName : FormVerifyStatus.LabelStatus.Caption := TableName;
 TUVerifyHeader : FormVerifyStatus.GaugeHeader.Progress := PercentDone;
 TUVerifyIndex : FormVerifyStatus.GaugeIndex.Progress := PercentDone;
 TUVerifyData : FormVerifyStatus.GaugeData.Progress := PercentDone;
 TUVerifySXHeader : FormVerifyStatus.GaugeHeaderIdx.Progress := PercentDone;
 TUVerifySXIndex : FormVerifyStatus.GaugeIndexIdx.Progress := PercentDone;
 TUVerifySXData : FormVerifyStatus.GaugeDataIdx.Progress := PercentDone;

 TUVerifySXIntegrity :
 begin
 FormVerifyStatus.GaugeIntegrity.Progress := PercentDone;
 FormVerifyStatus.LabelZeroOf.Caption := IntToStr(CurrentIndex);
 FormVerifyStatus.LabelOfZero.Caption := IntToStr(TotalIndex);
 FormVerifyStatus.refresh;
 end;
 end; {Case}
 end;
end;

NOTE : This is VERY important. DO NOT MAKE ANY DATABASE CALLS FROM THIS METHOD.
This event is actually part of a BDE Callback response. The rules for Callback responses are clear. The
BDE is not re-entrant, that means that you can not do anything here that would call the BDE. So.... No
database calls. Just make pictures.

property OnInfoVerReb: TInfoVerRebEvent;
OninfoVerReb sends textual messages back to your application as ExecuteVerifyRebuild runs. These
messages are in addition to those sent by onInfoVerify and onInfoRebuild. The text messages sent by
ExecuteVerifyRebuild and received in onInfoVerReb are general in nature and allow you to monitor the
VerifiyRebuild sequence. The TInfoVerRebEvent looks like this:

TInfoVerRebEvent = procedure(
 Sender: TObject;
 AMessage : String;
 Process : TUVerRebProcess;
 var Abort : Boolean) of object;

Where the Process field is

TUVerRebProcess = (TUVerifying, TURebuilding);

As ExecuteVerifyRebuild runs it sends general status information back to the application by firing
onInfoVerReb. The status information arrives in the AMessage field. This information can be written to
the screen or printer for later review.

The Process field indicates which process is running (verify or rebuild). You can abort onInfoVerReb by
setting Abort to true.

8. Reference TRepairDialog

The TRepairDialog component gives you a fast and easy way to implement to implement Paradox table
verify and repair in your application.

The component wrapper is found in the TRepDlg unit and the form itself is found in the TRepForm unit
and dfm files.

Great care has been taken to make the Repair Dialog as flexible as possible. Single or multiple table
repair
is completely supported along with the ability to deliver either a simple "one click" solution or a power
user
"do it all" solution.

Note the the source for the TRepForm has been included in the Batch demo directory (incase you are
interested).

TTUtility Public Properties

procedure Execute;
Displays the modal table verify and repair dialog box.

TTUtility Published Properties

property SourceDBName: String;
The SourceDBName property lets you pre-specify the database that contains the tables to be verified and
or repaired. This information can also be entered at run time by filling in the combobox labled "Source
DB".

property BorrowDBName: String;
BorrowDBName property lets you pre-specify where to borrow the table structures from in case a rebuild
is
necessary. This information can also be entered at run time by filling in the combobox labled "Borrow
Structure DB".

property DlgOptions: TRDOptions;
The DlgOptions property is the key to making the dialog box as simple or as powerful as your users
require. Use this property to show, hide, enable or disable the various parts of the dialog.

The various options are defined in the TRDOptions data type;

 TRDOption = (rdDBCombosEnabled,
 rdDBCombosVisible,
 rdCheckBoxEnabled,
 rdCheckBoxVisible,
 rdSourceListEnabled,
 rdSourceListVisible,
 rdSelectBtnsVisible,
 rdExceptListVisible,
 rdVerifyOnlyBtnVisible,
 rdViewErrosBtnVisible,
 rdVerRebBtnVisible,
 rdRebuildOnlyVisible,
 rdSaveBatchVisible,
 rdFileInfoVIsible,
 rdGuagesVisible,
 rdLogVisible);

where each member of the set determines the look and feel as follows;

rdDBCombosEnabled - Eanble/Disable the comboboxs labled "Source DB" and "Borrow Structure DB".
rdDBCombosVisible - Show/Hide the comboboxs labled "Source DB" and "Borrow Structure DB".
rdCheckBoxEnabled - Enable/Disable the "Only Rebuild ... " Checkbox.
rdCheckBoxVisible - Show/Hide the "Only Rebuild ... " Checkbox.
rdSourceListEnabled - Enable/Disable the listbox labled "Select Tables to verify and rebuild ...".
rdSourceListVisible - Show/Hide the listbox labled "Select Tables to verify and rebuild ...".
rdSelectBtnsVisible - Show/Hide the buttons that move the tables between the list boxes.
rdExceptListVisible - Show/Hide the list labled "Tables missing from the Borrow Structure DB".
rdVerifyOnlyBtnVisible - Show/Hide the button labled "Verify Only".
rdViewErrosBtnVisible - Show/Hide the button labled "View Error Table".
rdVerRebBtnVisible - Show/Hide the button labled "Verify & Rebuild".
rdRebuildOnlyVisible - Show/Hide the force rebuild button.
rdSaveBatchVisible - Show/Hide the button labled "Rebuild".
rdFileInfoVIsible - Show/Hide the file status information (Number or Records, Passwords, etc.).
rdGuagesVisible - Show/Hide the status guages.
rdLogVisible - Show/Hide the event log window.

property CallBackActive: Boolean
Some times you just don't want to see all those status guages spinning around. You can turn them off by

setting the CallBackActive property to false. Setting CallBackActive to false also improves performance.

property TableList : TStrings
The dialog box's TableList property lets you pre-specify which table in the source database should be
checked. The tables listed here will be preselected in the table list when the dialog box is first activated.

property BorrowRebuildOnly : Boolean
The BorrowRebuildOnly property pre-specifies if a table can be rebuilt without another table to
borrow the structure from. Its always a good idea to always borrow the structure of a known good table.
This property can be changed by the user at runtime by checking or unchecking the checkbox labled
"Only Rebuild if a matching table is in the Borrow Structure DB".

9. Reference TIdxUtl

The TIdxUtl component was added to the TUtility component set to give the Delphi application
developer a simple way to validate and update Paradox table indexes. With TIdxUtl you can check to see
if the indexes on a Paradox table are up to date and then if they are not the component can regenerate the
index(es). This component was added for completeness of the component set. The TUtility.Dll does not
check for out of date indexes so this component was added to fill the gap.

This component is especially useful in situations where file servers or work stations are rebooted while
table access is in progress. Often this does not cause table corruption however it often causes maintained
indexes to become out of date. You can also use this component with tables that have non-maintained
indexes. Use TIdxUtl with the TTUtility component for a complete table maintenance solution.

The TIdxUtl component does not use the TUtility.DLL. All calls access only are made directly the
Borland Database Engine only.

Since TIdxUtl does not use the TUtility.DLL you could develop an application without the table verify
and repair functionality but with index checking and regenerating and not worry about including
TUtility.DLL as a distribution file.

See section 10 of this document for a simple demonstration on the use of the TIdxUtl component.

TIdxUtl Public Properties

constructor Create(AOwner: TComponent)
You will only need this if you create your instance at runtime or if you create a descendent component.
Been there done that.

destructor Destroy; override;
Only of value if you are creating a new component with TTUtility as the descendent.

Function CheckIndexes : Boolean;
Execute CheckIndexes from your application to perform the check of the table identified in the
TableName property. CheckIndexes examines the information stored in the tables header to determine if
the index is out of date. Define an onInfoIdxCheck event to receive status information as the
CheckIndexes process runs.

If CheckIndexes finds that any of the Table's indexes are out of date then it returns FALSE. If all indexes
are up to date then TRUE is returned.

If the table is password protected then the Password property must be assigned, otherwise you will
receive a run time error.

procedure RegenIndex;
Execute RegenIndex from your application to regenerate out of date indexes.

If the RegenAll property is set to FALSE then only the indexes that are out of date are regenerated. If
RegenAll is TRUE than all indexes are regenerated. You can also control which indexes are regenerated
by defining the onInfoIdxRegen event.

Note : The Borland Database Engine User's Guide states, "The effect of regenerating a maintained index
is that it becomes more efficient and compact. (Frequent updates can fragment an Index)". pp277.

So... it a good idea to periodically regenerate all your indexes even if CheckIndexes shows all indexes are
up to date.

If the table is password protected then the Password property must be assigned, otherwise you will
receive a run time error.

TIdxUtl Published Properties

property Password : String
If the table has a master password it must be specified in this property otherwise CheckIndexes and
RegenIndex will not run.

property RegenAll : Boolean
Set this property to TRUE if you want RegenIndex to regenerate all indexes, including the indexes that
are up to date.

property Table: TTable
This property was added as an optional way of specifying the TableName (see TableName). You can
drop a TTable component into your form and then use this property to select that TTable component.
Assigning this component automatically assigns a value to the TableName property. This may be easier
than assigning the TableName property directly if the path name is very long.

Note that this property is completely optional and is meant only as a way of assisting in the assigning the
TableName property. Also note that using this method to assign Tablename uses slightly more resources
than assigning TableName directly,

property TableName : TFileName
Assign this property the name of the table to be checked and/or regenerated. This should be a completely
qualified file name, including the path.

property onInfoIdxCheck : TInfoIdxCheckEvent
The onInfoIdxCheck event reports information about the CheckIndexes process as it runs. The
TInfoIdxCheckEvent event is defined as:

TInfoIdxCheckEvent = procedure(
Sender: TObject;
IndexName : String;
IsUptoDate : Boolean) of object;

Where IndexName reports the name of the index being checked and IsUptoDate reports TRUE if the
index is up to date and FALSE if the index is out of date.

property onInfoIdxRegen : TInfoIdxRegenEvent
The onInfoIdxRegen event reports information about the RegenIndex process as it runs. You can also use
the onInfoIdxRegen event to selectively regenerate indexes in the selected table. The
TInfoIdxRegenEvent is defined as:

TInfoIdxRegenEvent = procedure(
Sender: TObject;
IndexName : String;
IsUptoDate : Boolean;
var Skip : Boolean) of object;

Where IndexName is the name of the index to be regenerated. IsUptoDate reports TRUE if the index is
up to date and FALSE if the index is out of date.

Use Skip to selectively regenerate indexes. If you set Skip to FALSE then the index will be regenerated
even if it is already up to date. Set Skip to TRUE if you do not want the index regenerated. Skip has
default values that will apply if you do not set its value. If the IsUptoDate parameter is TRUE then the
default value for Skip is TRUE. If IsUptoDate is FALSE then the default value for Skip is FALSE.

10. Demo #1 - A Simple Verify & Rebuild Application

The first demo project is PROJTU.DPR. It was developed in parallel with the TTUtility component as a
way to test the validity of the component and to insure that all the needed functionality and logic is there.
As a result the final project mimics the table repair utility found in Paradox for Windows in many ways.

In fact, the major difference is that this demo does not allow the user to manually define the table
structure of the table to be rebuilt. The complexity, potential for error, and further data corruption of
allowing the user to define the rebuild structure is so great that we believe that it should be avoided at all
costs.

The project consists of the main form (TUMAIN) and a form to display the records in the Error Table
created by ExecuteVerify (VWERRDLG).

Take a look at the way the two forms are set up. Pay particular attention to the way the properties are set
in the TTUtility component.

The code in the TUMAIN.PAS unit is full of comments. You should review this code in conjunction with
this documentation. There is nothing very tricky here. Notice the logic in the ButtonRebuildClick method
that decides how to rebuild the table.

11. Demo #2 A Batch Verify & Rebuild Application

BtchDemo2.DPR is the newest demo and was added by popular demand and has now replaced the
original batch demo which used a list of tables to define the batch. This project shows how to use a
database alias as the basis for a batch. It lets you select a database alias (directory) of files to be rebuild.
Further it lets you limit the files in this database by using the standard DOS wildcard characters.

Once you have selected the batch to be verified and/or rebuilt you can select the alias that contains the
tables to borrow structures from. If you check the "Always Borrow Structure" radio button then only
those files that are in both database aliases will be verified and/or rebuilt. This gives you another way of
limiting the files in a batch.

If you check the "All Damaged Tables - Borrow Structure if Available" radio button then all the files in
the top list will be verified and/or rebuilt. If there is no alternate structure for a table in the second list
then the rebuild will happen using the table's own structure. If there is no table in the second list and the
table in question has a level 3 or greater error then it will not be rebuilt and this fact will be reported in
the log.

If you check "Only Damaged Tables in Borrow Structure List" then only the tables listed in the second
list when "Borrow Structure List" is displaying will be rebuilt.

This project demonstrates a number of the properties, methods and events in TTUtility. Specifically it
shows how to:
* Define your own verify and rebuild status dialogs using onInfoVerify and onInfoRebuild.
* How to set up and use ExecuteVerifyRebuild to process a number of tables.
* How to build a batch processing log using the information returned in OninfoVerReb.
* How to do a batch verify with no rebuild and collect information on a number of tables in one error
table.
* Plus lots of other little things.

Load the BtchDemo2.DPR into Delphi and run it.

12. Demo #3 A Index Check and Regenerate

The IndxProj.DPR demonstrates the use of the TIdxUtl component. It is a very simple project. Take a
look at the TUIDX.PAS file to see how it's done. The inplementation of the two information events,
IdxUtl1InfoIdxCheck and IdxUtl1InfoIdxRegen are probably the most interesting.

Note that regenerating the indexes on a table were the index is not out of date still has the benefit of
packing the table and making it more efficient.

13. Demo #4 Table Repair Dialog Demo

TestProj.DPR is a project that demostrates the TRepairDialog component. Again, this is a very simple
project at simply shows off the various properties of the component.

The main screen of this demo gives you a chance to modify the various properties of the TRepairDlg
component. The "Execute Dialog" button activates the dialog and gives you a chance to see your
changes.

Note that the demo has the BorrowDBName and SourceDBName properties set to the same alias
(DBDEMOS). This is not very realistic and infact in not a very good idea in "real life". It is only done for
demonstration purposes to show that these properties can be set at design time and because the
DBDEMOS alais is the only alias that is likely to be already installed on your machine. In real life you
would want to have these two aliases different with the SourceDBName set to the database which
contains your working tables and the BorrowDBName set to an alias that contains a copies of your
working tables that are known to be good.

Appendix A - TUtility API Notes

The TTUtility component implements the functionality of Borland's TUtility.DLL through the function
made public by the published TUtility API. If you would like a copy of the API then download the
TUTILITY.ZIP file found in the Borland Tools forum on CompuServe. The following are some
observations about the TUtility API that we made during the development of this component.

BDE Sessions vs. TUtility Sessions
The TUtility API does not use the standard BDE session. In fact the API supports it's own specialized
session. This session has no knowledge of the things that are associated with a typical BDE session, like
aliases for example. This does not mean that you have no access to BDE session information while

working with the TTUtility component. You can still access the global session variable as long as the DB
unit is referenced in your uses clause. Just bear in mind that TTUtility itself knows nothing about session.
You do not need to worry about the TUtility session since it has been completely encapsulated into the
component.

The TUtility API also does all its table verification and rebuilding without ever opening a BDE cursor on
the table. This is a requirement for rebuild since if the table is corrupted no cursor could be opened in any
case.

Let me say that again. The TUtility component never opens a cursor on the table being worked on. Any
verify/rebuild functionality that you build into your application must insure that the table to be worked
has its active property set to false and that this property remain false while you use the TUtilitys
executeXXXX methods.

Passwords
Passwords and the TUtility API are rather tricky. Since the TUtility does not use a standard BDE session
it has no knowledge of what passwords are available. For this reason you must specify the table's master
password in order for the ExecuteRebuild procedure to work correctly.

WARNING & VERY IMPORTANT, there is no way to check if the password entered is valid. If a
table has a password assigned to it, ExecuteRebuild will run with no errors even if the wrong password
(or no password) is entered. When this happens the resulting rebuild table will have no records. Note that
this is even true in the Rebuild performed by Paradox for Windows. PFW will ask for a master password
but if you key in an incorrect one there is no error message. The table is rebuilt and the record count is
zero.

The TUtility component offers some ways to insure that the correct password is entered. Heres the
strategy. When the TableName property is assigned, as a side effect, it checks to see if a password is
required for the table. If a password is required it checks TUtility's password property to see if it has been
assigned. If no password has been assigned a message box asks the user to assign the password. Now with
the password in hand, TUtility attempts to get an extended description of the table without opening a
cursor on the table. If this is successful then TUtility's TableInfo record property will show a positive
value in the iRecords field. It's a good bet that if iRecords is zero then the password is incorrect but it's
still no guarantee since a corrupt table header can also return an iRecords count of zero even when the
password is correct.

Of course you could always try to open the table but if the table is corrupt then this may not be possible.
Remember that the TUtility component never opens a cursor on the table being worked on.

So the bottom line is, make sure the value assigned to the password property is correct .

Active Tables at Design Time
Another side effect of the TUtilities independent session is that it does not recognize a table being made
inactive (Active := False) at run time. Note, this limitation only applies when trying to run an
application inside the Delphi environment.

In fact, the TUtility component sees Delphi design time as being a separate application that has the table
it wants to work on open. This is unfortunate because it means that you must insure that no table that
could possibly be run against executeVerify or ExecuteRebuild be set to active at design time. For
example, you cannot set a table to active at design time and then set it to inactive at run time prior to
running executeVerify. The problem is that the TUtility API has no knowledge of the DBE session so it
does not see the table go inactive at run time. It still believes the table is open and you will get a "Table
Busy" error message. So.... you must insure that all tables in an application that use the TUtility API must
have there active property set to FALSE at design time.

This requirement is only true when you run your application under Delphi. The problem does not exist
when running the compiled executable application alone outside the Delphi environment. Also there is no
problem making a table active at run time. In fact, as long as the table starts off as Active = FALSE, then
active can be set to TRUE, have something done to it, set back to FALSE and have executeVerify run
against it!

The Rule is only that it must start off inactive if you want to test the verify/rebuild functionality inside
the Delphi environment.

Appendix B - Strategies for corrupt file recovery

Creating an Environment for the Painless Recovery of Table Corruption

Over the years, TUtility, in its various forms, has probably created more forum and seminar discussion
than probably any other single aspect of the Paradox database system. Certainly corruption and lost data
tends to be a loud issue. I'm sure you've all seen the bumper sticker:

Data Corruption Happens!

Data corruption does seem to just happen. Probably the biggest reason is desktops or servers being turned
off or rebooted while some table activity is going on. Often there is no apparent reason and often the data
corruption can go on for a long period of time before anyone notices. The one thing that you can be sure
of is that data corruption will eventually happen.

Creating an environment that allows you to recover from data corruption quickly, easily and with
minimum loss of data is really very straight forward. Just follow three rules:

Rule #1 - Backup your files regularly and keep a number of iterations of the backups.
While this rule is obvious it still needed to be said. Going to a non-corrupt backup is sometimes the only
way you have of recovering from a badly damaged table. If ExecuteVerify reports a level 4 error in
iErrorLevel then you are SOL unless you have a recent (and good) backup.

Rule #2 - For every table in your database keep an empty clone of it stored in a separate
directory and on removable disk.
As mentioned earlier, the safest way to rebuild a table is to borrow the tables structure from another
identical table which is known to be good. The official word is that the TUtility.DLL can rebuild a table
using its own structure as long as the iErrorLevel is less than 3. While this is the official word there are a
number of users out there who would disagree based on experience. So let us say again: "When ever
possible rebuild tables using a borrowed structure from a known good clone."

Note that "empty tables" is really not quite correct. The tables in your "borrow structure"
directory should actually have at least one dummy record in each. The reason for this is that for
some reason the table repair DLLs (TUTILITY.DLL and TUTIL32.DLL) believe that an empty
table is a corrupt table.

Rule #3 - Verify all your tables on a regular basis.
The Paradox world is littered with stories of corrupt tables that turned out to also be corrupt on the last
backup, on the backup before that. In fact we heard one story of a shop that went back to its year end
backup (9 months old) and discovered that the table in question was corrupt even then. The solution is
simple: verify all the tables in your database on a regular basis. It has even been suggested that
ExecuteVerify should be part of the normal backup routine. This seems like a good idea if time permits.
The sooner you catch and correct a corrupt table problem the better off you are.

Deciding How to Rebuild a Table
The decision on how to rebuild a table can be a little complicated. By far the simplest (and safest)
solution is to not make the decision at all and to always rebuild the table using an alternate or borrowed
table structure.

Having said that, here are the decision making rules if you want to make a decision.

Check the iErrorLevel property after ExecuteVerify is run. If iErrorLevel is less than 3 then the table is a
good candidate for a rebuild using its own structure. The possibly of a successful rebuild goes down if the
TblInfo.bValidInfo value is FALSE and/or the TblInfo.iRecord shows a value of zero when you know the
table has records in it. But even then you might be OK.

What to do when you have a Level 3 Error and no table to borrow the structure
from
If this happens then you are still probably OK it's just that you need to do a little more work. You need to
create a table using either Paradox or the Database Desktop. This table must be exactly the same structure
as the corrupt table. If you don't know the structure then you are out of luck. Once you have created this
table you can use it as the alternate structure table and borrow its structure to rebuild the corrupt table.

Appendix C - TUtility Error Codes

Error messages associated with the error codes returned in the Error Code field of the error table created
by ExecuteVerify.

Error Message

 1 Unable to open file %s
 2 Invalid Header size %u
 3 Invalid file size %ld: %s
 4 Invalid block size %u: %s
 5 Real header size %u is invalid
 6 Invalid sort byte in header
 7 Sum of field sizes does not equal record size
 8 Not enough memory to complete operation
 9 Header size is not a multiple of 2K
 10 Unsupported field type in field %u
 11 Field name greater than 25 char
 12 Header real size %u is greater than start of data %u
 13 File type %s does not match extension %s
 14 Unknown file type
 15 Keyed db missing px file.
 16 Maintained index missing .y* file.
 17 Invalid record size
 18 Unable to read file %s
 19 Table header reports damage
 20 Total blocks (%u) greater than max blocks (%u)
 21 Header inconsistent
 22 Invariant Field ID %u for Field %u is greater than max field id %u
 23 First block greater than total blocks
 24 Last block greater than total blocks
 25 Index version does not match table version
 26 Index record size does not match table keysize
 27 Block %u is in the chain twice
 28 Number of records %i in block %u does not match index %li
 29 Reported header size is not large enough to hold header information

 30 Header size (%u) + data size (%ld) does not equal filesize (%ld)\nDifference: %ld bytes
 31 Block pointers in block %u do not match pointers in block %u
 32 First record of Block %u does not match index
 33 Forward block pointer in block %u is out of range
 34 Number of records in index file is greater than the number of blocks in data file
 35 Record %lu is not in sort order
 36 Empty block (%u) in used block chain
 37 Number of blocks is greater than the number of records in index
 38 Last block in chain (%u) does not match header (%u)
 39 Number of records found (%lu) does not match number of header records (%lu)
 40 Number of blocks in used block chain (%u) does not equal used blocks in header (%u)
 41 Empty block %u reports records
 42 Empty block pointer in block %u is out of range
 43 Total Blocks reported by header (%u) does not equal blocks found in chain (%u)
 44 Previous block pointer in block %u is out of range
 45 Secondary Index %s does not match table
 46 Used blocks greater than total blocks\n\tUsed blocks = %u\n\tTotal blocks = %u
 47 First block = 0 and header reports used blocks
 48 Data start (%u) is greater than file size (%lu)
 49 Hanging .PX file
 50 Hanging .Y** file
 51 Table is full. Unable to allocate block
 52 BTree record mismatch from block (%u) record(%i) to block (%u)
 53 BTree record number mismatch from block (%u) record(%i) to block (%u)
 54 Pointer to last record (%i) in Block %u is not consistent with record size (%u)
 55 Alpha Field %s in record %lu contains low ascii chars
 56 Field %s of record %lu does not match secondary index %s
 57 Field number out of bounds in secondary index %s
 58 Invalid number of fields.
 59 Field size %u is invalid for field type %s in field number %u
 60 Invalid table format
 61 Block %u points to itself
 62 Number of key fields is greater than the number of fields in the table
 63 Write-protect flag
 64 Sort name missing from header
 65 The indices are out of date:\nA rebuild is recommended!
 66 Modified flags are set:\nA rebuild is recommended!
 67 Invalid memo field
 68 Header not consistent with format
 69 Header inconsistent with version
 70 Invalid sequence number
 71 Data in field %s of record %lu does not match .MB file
 72 Blob pointer offset for field %u of record %lu points to a memo block header invalid

type
 73 Blob pointer index for field %u of record %lu is invalid
 74 Blob pointer length for field %u of record %lu does not match .MB file
 76 Memo file signature is not valid
 75 Blob pointer sequence number for field %u of record %lu does not match .MB file
 77 Unsupported memo version
 78 Unsupported memo free block size
 79 Unsupported memo increment size
 80 Unsupported memo list block size
 81 Unsupported memo small block index size
 82 Unsupported memo big block size
 83 Unsupported memo small block size
 84 Missing .MB file

 85 File size is too large to be a replica table
 86 Replica table reports records
 87 Float field %s in record %lu has denormal value
 88 Float field %s in record %lu has exponent smaller than accepted minimum
 89 Float field %s in record %lu has +/- infinity value
 90 Float field %s in record %lu has quiet NAN value
 91 Float field %s in record %lu has signaling NAN value
 92 Float field %s in record %lu has exponent larger than accepted maximum
 93 Used memo block in free list chain
 94 Free memo size does not match size reported in free list
 95 Language driver unsupported
 96 Invalid formatted memo header
 97 Secondary Index %s is out of date

Appendix D - TTUtility Component Interface and structures
unit Tu;

{$N+,P+}

interface

uses SysUtils, WinTypes, WinProcs, DB,
{$IFDEF WIN32}
BDE, Registry,
{$ELSE}
DbiErrs, DbiTypes, DbiProcs, Ver, IniFiles,
{$ENDIF}
Forms,Dialogs, Classes, Controls, DBTables, FileCtrl,
VerDlg, RebDlg;

Type
 { Exception classes }
 ETUtilityError = class(Exception);

 { Verify Options }
 TVerifyOption = (
 vTU_Append_Errors, {append errors to an existing error table}
 vTU_No_Secondary, {Bypass secondary indexes}
 vTU_No_Warnings, {Prevents warnings of secondary errors}
 vTU_Header_Only, {Verify table header only}
 vTU_Dialog_Hide, {Reserved for future expansion. Do not use}
 vTU_No_Lock); {Do not lock table bering varified}
 { Verify callback types }
 TVerifyOptions = Set of TVerifyOption;

 { Verify Callback processes }
 TUVerifyProcess = (TUVerifyHeader, TUVerifyIndex, TUVerifyData, TUVerifySXHeader,
 TUVerifySXIndex, TUVerifySXData, TUVerifySXIntegrity,
 TUVerifyTableName, TURebuild);

 { Call back info record used internally for Verify Callback function }
 pTUVerifyCallBack = ^TUVerifyCallBack;
 TUVerifyCallBack = record
 PercentDone : word;
 TableName : DBIPath;
 Process : TUVerifyProcess;
{$IFDEF WIN32}
 Junk : array[1..3] of byte;
{$ELSE}
 Junk : array[1..1] of byte;
{$ENDIF}
 CurrentIndex : Byte;
 MoreJunk : Byte;
 TotalIndex : byte;
 end;

 { Record that is passed to users event for Verify Callback function }
 TVerifyCBData = record
 PercentDone: word;
 TableName: String[82];
 Process: TUVerifyProcess;
 CurrentIndex: word;
 TotalIndex: word;
 end;
 TRebuildCBData = record
 iPercentDone : Integer; { Percentage done. }
 sMsg : String[128]; { Message to display }
 end;

 { Event classes }
 TInfoVerifyEvent = procedure(
 Sender: TObject; {Where the message came from}
 VerifyCBRec: TVerifyCBData) of object; {The data to be acted on}
 TInfoRebuildEvent = procedure(
 Sender: TObject; {Where the message came from}
 RebuildCBRec: TRebuildCBData) of object; {The data to be acted on}
 { Type used by the FOnInfoVerReb event to tell app which process is executiong }
 TUVerRebProcess = (TUVerifying, TURebuilding);

 TInfoVerRebEvent = procedure(
 Sender: TObject;
 AMessage : String;
 Process : TUVerRebProcess;
 var Abort : Boolean) of object;

 { TTableInfo Record }
 TTableInfo = Record
 sTableType : String[32]; { Driver type }
 iFields : Word; { No of fields in Table }
 iRecSize : Word; { Record size (logical record) }
 iKeySize : Word; { Key size }
 iIndexes : Word; { Number of indexes }
 iValChecks : Word; { Number of val checks }
 iRefIntChecks : Word; { Number of Ref Integrity constraints }
 iRestrVersion : Word; { Restructure version number }
 iPasswords : Word; { Number of Aux passwords }
 bProtected : Bool; { Table is protected by password }
 sLangDriver : String[32]; { Language driver name }
 iBlockSize : Word; { Physical file blocksize in K }
 iRecords : Longint; { Number of records in table }
 bValidInfo : Bool; { Info available for this table }
 end;

 TVersionNumber = Record
 MS1 : Word;
 MS2 : Word;
 LS1 : Word;
 LS2 : Word;
 end;

 {TU Session Handle Type}
 hTUses = word;
 phTUses = ^hTUses;

 {Emplicit loading of TUtility DLL functions requires exported function
 Types}

{$IFDEF WIN32}
 tTUInit = function(var hTUSession: hTUses): DBIResult; stdcall;

 tTUVerifyTable = function(hTUSession: hTUses;
 pszTableName,
 pszDriverType,
 pszErrTableName,
 pszPassword: PChar;
 iOptions: Integer;

 var piErrorLevel: Integer): DBIResult stdcall;

 tTURebuildTable = function(hTUSession: hTUses;
 pszTableName,
 pszDriverType,
 pszBackupTableName,
 pszKeyviolName,
 pszProblemTableName: PChar;
 pCrDesc: pCRTblDesc): DBIResult stdcall;

 tTUGetCRTblDescCount = function(hTUSession: hTUses;
 pszTableName: PChar;
 var iFldCount,
 iIdxCount,
 iSecRecCount,
 iValChkCount,
 iRintCount,
 iOptParams,
 iOptDataLen: word): DBIResult stdcall;

 tTUFillCRTblDesc = function(hTUSession: hTUses;
 pCrDesc: pCRTblDesc;
 pszTableName,
 pszPassword: PChar): DBIResult stdcall;

 tTUFillCURProps = function(hTUSession: hTUses;
 pszTableName: PChar;
 var tblProps: CURProps): DBIResult stdcall;

 tTUGetExtTblProps = function(hTUSession: hTUses;
 pszTableName: PChar;
 var pTS: TimeStamp;
 var pbReadOnly: Boolean): DBIResult; stdcall;

 tTUExit = function(hTUSession: hTUses): DBIResult stdcall;

 tTUGetErrorString = function(iErrorcode: DBIResult;
 pszError: PChar): DBIResult stdcall;
{$ELSE}
 tTUInit = function(var hTUSession: hTUses): DBIResult;

 tTUVerifyTable = function(hTUSession: hTUses;
 pszTableName,
 pszDriverType,
 pszErrTableName,
 pszPassword: PChar;
 iOptions: integer;
 var piErrorLevel: word): DBIResult;

 tTURebuildTable = function(hTUSession: hTUses;
 pszTableName,
 pszDriverType,
 pszBackupTableName,
 pszKeyviolName,
 pszProblemTableName: PChar;
 pCrDesc: pCRTblDesc): DBIResult;

 tTUGetCRTblDescCount = function(hTUSession: hTUses;
 pszTableName: PChar;
 var iFldCount,
 iIdxCount,
 iSecRecCount,
 iValChkCount,
 iRintCount,
 iOptParams,
 iOptDataLen: word): DBIResult;

 tTUFillCRTblDesc = function(hTUSession: hTUses;
 pCrDesc: pCRTblDesc;
 pszTableName,
 pszPassword: PChar): DBIResult;

 tTUFillCURProps = function(hTUSession: hTUses;
 pszTableName: PChar;
 var tblProps: CURProps): DBIResult;

 tTUGetExtTblProps = function(hTUSession: hTUses;
 pszTableName: PChar;
 var pTS: TimeStamp;
 var pbReadOnly: Boolean): DBIResult;

 tTUExit = function(hTUSession: hTUses): DBIResult;

 tTUGetErrorString = function(iErrorcode: DBIResult;
 pszError: PChar): DBIResult;

{$ENDIF}

 { Dll Error type}
 EDLLLoadError = class(Exception);

 { TTUtility }
 TTUtility = class(TComponent)
 private
 FTableName: TFileName;
 FTable : TTable;
 FErrTableName: TFileName;
 FBkUpTableName: TFileName;
 FKeyVTableName: TFileName;
 FProbTableName: TFileName;
 FAltStructName: TFileName;
 FAltStructAlways: Boolean;
 FAlwaysRebuild : Boolean;
 FphTUSession: phTUses; {TUTility session handle. }
 FOptions : TVerifyOptions;
 FPassword : String;
{$IFDEF WIN32}
 FiErrorLevel: Integer ; { Error Level of the table. }
{$ELSE}
 FiErrorLevel: word; { Error Level of the table. }
{$ENDIF}
 FCBActive : Boolean;
 FPack : Boolean;
 FVersionTU : TVersionNumber; {contains the version of the installed TUTIL32.DLL}
 FVersionBDE : TVersionNumber; {contains the version of the installed BDE}
 FCBVerifyDialog: TVerifyDlg;
 FCBRebuildDialog : TRebuildDlg;

 FTableInfo : TTableInfo;
 FAltTableInfo : TTableInfo;
 FpCrDesc : pCRTblDesc; { Pointer to Table Description }
 FOnInfoVerify: TInfoVerifyEvent; {The callback function fires this through
OnInfoUpdate}
 FOnInfoRebuild: TInfoRebuildEvent; {The callback function fires this through
OnInfoUpdate}
 FOnInfoVerReb : TInfoVerRebEvent;

 LibHandle : THandle; {Dll Handle}
 TUInit : tTUInit;
 TUVerifyTable : tTUVerifyTable;
 TURebuildTable : tTURebuildTable;
 TUGetCRTblDescCount : tTUGetCRTblDescCount;
 TUFillCRTblDesc : tTUFillCRTblDesc;
 TUFillCURProps : tTUFillCURProps;
 TUGetExtTblProps : tTUGetExtTblProps;
 TUExit : tTUExit;
 TUGetErrorString : tTUGetErrorString;

 function ConvertName(const Name: string; Buffer: PChar): PChar;
 function GetATblDesc(aTable : TFileName): pCRTblDesc;
 function GetpCRTblDesc : pCRTblDesc;
 function GetpAltCRTblDesc : pCRTblDesc;
 function GetErrorName : TFileName;
 function GetBackupName : TFileName;

 function GetKeyViolName : TFileName;
 function GetProblemName : TFileName;
 function GetiOptions : Integer;
 function GetVersionTU : String;
 function GetVersionBDE : String;

 procedure DestroyTUSession;
 function NewhTUSession : hTUSes;
 procedure SetpCRTblDesc(value : pCRTblDesc);
 procedure SetTable(const Value: TTable);
 procedure SetTableName(const Value: TFileName);
 procedure SetErrTableName(const Value : TFileName);
 procedure SetBkUpTableName(const Value : TFileName);
 procedure SetKeyVTableName(const Value : TFileName);
 procedure SetProbTableName(const Value : TFileName);
 procedure SetAltStructName(const Value : TFileName);
 procedure SetPassword(const PW : String);
 Procedure SetTableInfo(const Value : TFileName; var aInfoRec : TTableInfo);
 Procedure SetCBVerifyDialog(Const Value : TVerifyDlg);
 Procedure SetCBRebuildDialog(Const Value : TRebuildDlg);
 procedure FillTableInfoFromCURProps(const Value : TFileName; var aInfoRec :
TTableInfo);
 procedure FillTableInfoFromTBLExtDesc(const Value : TFileName; var aInfoRec :
TTableInfo);
 procedure CleanUpCrDesc;
 protected
 procedure Notification(AComponent: TComponent;
 Operation: TOperation); override;
 procedure Loaded; override;
 property ErrorName: TFileName read GetErrorName;
 property BackupName: TFileName read GetBackupName;
 property KeyViolName: TFileName read GetKeyViolName;
 property ProblemName: TFileName read GetProblemName;
 property iOptions : Integer read GetiOptions;
 procedure DoInfoUpdateVerify(pInfo: Pointer);
 procedure DoInfoUpdateRebuild(pInfo: Pointer);
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
{$IFDEF WIN32}
 property iErrorLevel : Integer read FiErrorLevel;
{$ELSE}
 property iErrorLevel : Word read FiErrorLevel;
{$ENDIF}
 procedure ExecuteVerify;
 procedure ExecuteRebuild(pTableDesc : pCRTblDesc);
 procedure ExecuteVerifyRebuild;
 property TblInfo: TTableInfo read FTableInfo;
 property AltTblInfo : TTableInfo read FAltTableInfo;
 property pCurrentTblDesc: pCRTblDesc read GetpCRTblDesc write SetpCRTblDesc;
 property pAltTblDesc: pCRTblDesc read GetpAltCRTblDesc;
 property VersionTU : String read GetVersionTU;
 property VersionBDE : String read GetVersionBDE;
 published
 property CBActive : Boolean read FCBActive write FCBActive default false;
 property Pack : Boolean read FPack write FPack default True;
 property Options: TVerifyOptions read FOptions write FOptions default [];
 property Password : String read FPassword write SetPassword;
 property Table: TTable read FTable write SetTable;
 property TableName : TFileName read FTableName write SetTableName;
 property tErrTableName : TFileName read FErrTableName write SetErrTableName;
 property tBkUpTableName: TFileName read FBkUpTableName write SetBkUpTableName;
 property tKeyVTableName: TFileName read FKeyVTableName write SetKeyVTableName;
 property tProbTableName: TFileName read FProbTableName write SetProbTableName;
 property AltStructName: TFileName read FAltStructName write SetAltStructName;
 property AltStructAlways: Boolean read FAltStructAlways write FAltStructAlways;
 property AlwaysRebuild : Boolean read FAlwaysRebuild write FAlwaysRebuild;
 property CBVerifyDialog: TVerifyDlg read FCBVerifyDialog write SetCBVerifyDialog;
 property CBRebuildDialog: TRebuildDlg read FCBRebuildDialog write SetCBRebuildDialog;
 property OnInfoVerify: TInfoVerifyEvent read FOnInfoVerify write FOnInfoVerify;
 property OnInfoRebuild: TInfoRebuildEvent read FOnInfoRebuild write FOnInfoRebuild;
 property OnInfoVerReb: TInfoVerRebEvent read FOnInfoVerReb write FOnInfoVerReb;

 end;

Appendix E - TIdxUtl Component Interface and structures
type
 TInfoIdxCheckEvent = procedure(
 Sender: TObject;
 IndexName : String;
 IsUptoDate : Boolean) of object;

 TInfoIdxRegenEvent = procedure(
 Sender: TObject;
 IndexName : String;
 IsUptoDate : Boolean;
 var Skip : Boolean) of object;

 TIdxUtl = class(TComponent)
 private
 FTableName: TFileName;
 FTable : TTable;
 FPassword : String;
 FRegenAll : Boolean;
 FTblFullDesc: TBLFullDesc;
 FDatabaseName : TFileName;
 FDatabase: TDatabase;
 FhCur : hDBICur;
 FOnInfoIdxCheck : TInfoIdxCheckEvent;
 FOnInfoIdxRegen : TInfoIdxRegenEvent;
 function ConvertName(const Name: string; Buffer: PChar): PChar;
 procedure FillTableInfoFromTBLExtDesc(const Value : TFileName);
 procedure SetPassword(const PW : String);
 Procedure SetTableInfo(const Value : TFileName);
 procedure OpenIndexList(TblName : TFileName);
 procedure SetTableName(const Value: TFileName);
 procedure SetTable(const Value: TTable);
 protected
 procedure Notification(AComponent: TComponent;
 Operation: TOperation); override;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 Function CheckIndexes : Boolean;
 procedure RegenIndex;
 published
 property Password : String read FPassword write SetPassword;
 property RegenAll : Boolean read FRegenAll write FRegenAll;
 property Table: TTable read FTable write SetTable;
 property TableName : TFileName read FTableName write SetTableName;
 property onInfoIdxCheck : TInfoIdxCheckEvent read FonInfoIdxCheck write
FonInfoIdxCheck;
 property onInfoIdxRegen : TInfoIdxRegenEvent read FonInfoIdxRegen write
FonInfoIdxRegen;
 end;

Appendix F - Version information & Requirements for DLLs and the BDE

There are a number of different version of the Tutility DLL's and the Borland Database Engine
(BDE) floading around. These DLLs must matched correctly with the BDE in order to work
correctly. The best way to refer to different versions of the table repair DLLs and the BDE DLLs
to use the Time stamp on the DLL file. Borland consistantly uses that time to indicate external
version numbers.

16 Bit DLLs for Delphi 1.xx

Paradox 5 level DLLs. - Paradox 5 was only a 16 bit WIndows 3.x and WfW application. The
Paradox 5 table repair DLL was TUTILITY.DLL version 2.50 and it is compatible with the version
of the BDE that shipped with Delphi 1.x. (BDE version 2.51)

Version Info for Paradox 5 TUTILITY.DLL
Time Stamp 2.50
Date 2/4/95
Internal Version # 2.5.1.1

Compatible BDE
Time Stamp 2.51
Date 6/22/95
Internal Version # 2.5.1.23

Paradox 7 for WIndows 3.1 & WFW DLLs - The TUTILITY.DLL that shipped with Paradox 7 (16
bit) is external version 2.52 and requires the BDE with the external version 2.52. This version of
the DLL fixes the problem of auto-increment type fields being renumbered during a rebuild. This
DLL requires the version of the BDE that shipped with Paradox 7 (16 bit). Note that the BDE that
comes with Delphi 1.x will not work with this newer TUTILITY.DLL. The Paradox 7 BDE (version
2.52) is availiable for download from Borland's web site, the Borland Tools Forum on
Compuserve or from the Out & About web site at www.o2a.com.

Version Info for Paradox 7 TUTILITY.DLL
Time Stamp 2.52
Date 3/29/96
Internal Version # 2.5.1.52

Compatible BDE
Time Stamp 2.52
Date 3/29/96
Internal Version # 2.5.1.52

32 Bit DLLs for Delphi 2.xx

The table repair DLL for the 32 bit world are named TUTIL32.DLL.

Paradox 7 for WIndows 95 and NT - Table repair from Delphi 2.xx became possible with the
release of Paradox 7 for Win 95 and NT. BDE versions 3.00 and 3.02 work TUTIL32.DLL version
3.00 and 3.02.

Version Info for Original Paradox 7 for Win95 and NT TUTIL32.DLL
Time Stamp 3.00
Date 3/27/96
Internal Version # 3.0.0.149

Version Info for next TUTIL32.DLL that was posted on Borland Web Site.
Time Stamp 3.02
Date 6/1/96
Internal Version # 3.0.0.180

The above two DLLs were exactly the same size and are probably really the same they both will
work with
Compatible BDE

Time Stamp 3.02
Date 6/1/96
Internal Version # 3.0.0.180

Note that the original Delphi 2.00 BDE version 3.00 will also work but the version info is not
available here.

IntraBuilder BDE Release - With the publication of IntraBuilder Borland released a new BDE and
TUTIL32.DLL these must be used together and will not work with the earlier files.
Version Info for next TUTIL32.DLL that was posted on Borland Web Site.

Time Stamp 3.12
Date 8/22/96
Internal Version # 3.1.2.9

Compatible BDE
Time Stamp 3.12
Date 8/22/96
Internal Version # 3.1.2.9

September Borland BDE Web Post - In September Borland posted another set of BDE and
TUTIL32.DLL files. These should also be used together.

Time Stamp 3.50
Date 9/19/96
Internal Version # 3.5.0.20

Compatible BDE
Time Stamp 3.50
Date 9/19/96
Internal Version # 3.5.0.20

Note that there seems to be a problem with the 3.12 and 3.50 releases with regard to the current
version of Paradox 7 for WIn95 and NT. The problem is that if you use the Table Rebuild
functionality in Paradox 7 and then go to exit Paradox 7 the application will cause a GPF. This
seems to have something to do with unloading the newer TUTIL32.DLL from memory. We were
aware of this problem for this release of the TTUtility component and have made sure that the
same problem does not exist here.

TTUtility Ordering Information

The demonstration/shareware version of this components is fully functional inside the Delphi
environment. Attempt's to run an application that uses this component will fail as a stand-alone
executable. If you find this control useful and would like to use it in your applications you must
order the regular version.

For $49 U.S. (Calf. residents + 7% SST), you will receive the full version plus any updates for the
next year. MasterCard, Visa, and American Express are accepted. The component will be sent to
you by CompuServe or Internet e-mail. The source code is available for an additional $40 (such a
deal).

Or you can go SWREG and put it on your CompuServe bill.
SWREG # 6951 - Component without source $49.00
SWREG # 6950 - Component with source $89.00

To order via e-mail, please send your credit card number, expiration date, name as it appears on
the card, and your e-mail address so we have some place to ship the product to
75664.1224@compuserve.com. We would also like your mailing address and voice phone
number but it's not completely necessary (you become a pin on a map of the world). If you are
uncomfortable with the e-mail idea you can fax the info to us a (619) 566-0210, or, worse yet,
write us at the address below. If you are ordering through CompuServe the product will come as
a ZIP file. If you are ordering through the Internet the product will come as a UUE file which you
will need to convert to a ZIP file.

Any technical questions regarding this component should forwarded to
70664.1453@compuserve.com or the FAX number.

The above prices include all updates and upgrades to the component for a year and technical
support via CompuServe/Internet.

Visit our Web Site

You will also find answers to frequently asked questions on our WWW site http://www.o2a.com.
We update this area on a regular basis. Find out how you can beta test our new speech utility
product. This utility will let you add text-to-speech and voice recognition to your products. Be the
first one in your market with voice-enabled products.

Other Products from Out & About Productions

TDBLookupComboPlus - Advanced Quicken style replacement for TDBLookupCombo, with
new styles to support sorted drop down lists, incremental (as you type) search and smart auto fill-
in of untyped data. These Quicken-style behaviors substantially enhance data entry speed and
accuracy.

TDBLookupComboPlus recognizes and supports Master/Detail relationships in the lookup table
giving the developer a fast and simple way to filter the data in the drop down list.

Other features include the ability to add new lookup records on the fly, searches on numeric
values, ability to populate the lookup list from a query, enhanced list alignment capabilities, Plus
much, much more. A must have for your component arsenal. Hundred's of happy Delphi
developers can't be wrong. This is very cool!

Search for and download DBLUP2.ZIP from the Delphi forum on CompuServe or you favorite
Delphi FTP or Web sight. http://www.o2a.com

TDBComboBoxPlus - All the Quicken styles features of TDBLookupComboPlus but this one
replaces the original Delphi TDBComboBox component. This is a completely new control and
unlike TDBCombo it is not based on the standard Win Control. By starting from scratch we were
able to implement lots of super new features including the Quicken style features mentioned
above, plus data alaising, multiple columns, titles and much, much more. TComboBoxPlus -
Same features as TDBComboBoxPlus but not data aware. Designed as a supped up
replacement for Delphi's TComboBox.

These two components are sold as a pair. For a demo search for CBPLUS.ZIP in the Delphi
forum on CompuServe or in you favorite FTP or WWW site.

Binford 2000 Combobox Combo - You can also purchase the DBComboBoxPlus and
ComboBoxPlus along with the original DBLooupComboPlus component as a set at a discount
over purchasing the components separately. This super combobox combo is only $40 without
the source (a $10 savings) or $60 with the source (a $15 savings). This special combo deal is
also available through the SWREG program, just search for "Binford" or CompuServe ID number
75664,1224.

How to contact us.

Orders:
CompuServe ID 75664,1224
Internet : 75664.1224@compuserve.com

Technical Support:
CompuServe ID 70664,1453
Internet : 70664.1453@compuserve.com

E-Mail:
http://www.o2a.com

Snail Mail:
 Out & About Productions
1038 Noe Street
San Francisco, CA 94114

TTUility, TDBComboBoxPlus, ComboBoxPlus, and TDBLookupComboPlus,
their help files, and documentation are copyright 1995, 1996, 1997, by

Out & About Productions and are protected by international law. All Rights
Reserved.

